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A New Approach to False Discovery Rates and Multiple 
Hypothesis Testing 

John D. Storeyt 

Department of Statistics, Stanford University, Stanford CA 94305, USA. 

Summary. Testing multiple hypotheses involves guarding against much more complicated 
errors than when testing a single hypothesis. Whereas one typically controls the Type I error 
rate for a single hypothesis test, the Family Wise Error Rate (FWER) or the False Discovery 
Rate (FDR) are controlled for multiple hypothesis tests. Therefore, just as in single hypothesis 
testing, the acceptable error rate is fixed and the rejection region is found to control the error 
rate. Controlling the FWER or FDR often involves complicated sequential p-value rejection 
methods based on the observed data. In other words, the rejection region is estimated from 
the data. In this paper we propose the opposite approach - fix the rejection region and then 
estimate the error rate. This new approach offers increased applicability, accuracy, and power. 
We apply this methodology to the FDR and provide evidence for its benefits. Also discussed 
is the calculation of the q-value, which is the FDR analogue of the p-value. Some simple 
numerical examples are presented that show this new approach can yield over a 10 times 
increase in power compared to the Benjamini and Hochberg (1995) method. We also briefly 
discuss how this approach can be applied to other multiple hypothesis testing error measures, 
such as the FWER. 

Keywords: False Discovery Rate, Multiple Hypothesis Testing, q-values, p-values 

1. Introduction 

The basic paradigm for single hypothesis testing works as follows. We wish to test a null 
hypothesis Ho versus an alternative H1 based on a statistic X. For a given rejection region 
r, we say H 1 is true when XE rand Ho is true when XE r. A Type I error occurs when 
X Er but Ho is really true; a Type II error occurs when X </. r but H1 is really true. In 
order to choose r, the acceptable Type I error is set at some level o:. Then all rejection 
regions are considered that have Type I error less than or equal to o:. The one that has 
the lowest Type II error is chosen. Therefore, the rejection region is sought with respect to 
controlling the Type I error. This approach has been fairly successful, and often times one 
is able to find a rejection region with nearly optimal power (power = 1-Type II error) while 
maintaining the desired o: level Type I error. 

When testing multiple hypotheses, the situation becomes much more complicated. Now 
each test has Type I and Type II errors, and it becomes unclear how we should measure 
the overall error rate. The first measure to be suggested was the Family Wise Error Rate 
(FWER). The FWER is the probability of making one or more Type I errors among all the 
hypotheses. Instead of controlling the probability of a Type I error at level o: for each test, 
the overall FWER is controlled at level o:. Nonetheless, o: is chosen so that FWER :::; o:, 
and then a rejection region r is found that maintains level o: FWER, but also yields good 
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2 John D. Storey 

power. (We will assume for simplicity that each test has the same rejection region, such as 
would be the case when using the p-values as the statistic.) 

In pioneering work, Benjamini and Hochberg (1995) introduced a multiple hypothesis 
testing error measure called the False Discovery Rate. This quantity is the expected pro­
portion of false positives out of the total number of rejected hypotheses. In many situations, 
the FWER is much too strict, especially when the number of tests is large. Therefore, the 
FDR is a more liberal, yet more powerful quantity to control. We will mostly concentrate 
on the FDR because it shows a lot of promise in modern applications; but for completeness 
we will motivate our approach in the context of the FWER and FDR. 

Suppose there are n hypotheses we wish to test, of which no of the null hypotheses are 
true. For example, if we reject all p-values ~ a, then the FWER is 1 - (1 - a)n°. The 
difficulty of dealing with the FWER arises because we do not know no. Therefore, for a 
chosen a, we have two choices. We can provide weak control of the FWER in that we 
guarantee FWER ~ a when n = n 0 . Strong control of the FWER is provided when FWER 
~ a for any n0 • Usually weak control of the FWER is undesirable, so strong control is 
obtained. In order to find a common rejection region for all tests, each statistic is converted 
into its p-value. Under the null hypothesis the p-value has a Uniform[0,1] distribution, but 
it is often the case that the distribution of the p-value is unknown under the alternative 
distribution. 

The situation that has been studied the most is when we reject hypotheses based on the 
p-values and when each test is independent (Shaffer 1995). Therefore, we will focus on that 
situation in this paper. The simplest multiple testing procedure that strongly controls the 
FWER is the Bonferroni method. In this method, the level of each test is set at a/n, and this 
provides a FWER ~ a for any no. There are many methods that have been subsequently 
developed - see Shaffer (1995) for a review of these methods. Basically, each method was 
introduced to try to increase the overall power, while strongly maintaining the FWER ~ a. 
These methods usually involve a sequential treatment of the p-values, either starting from 
the largest and working towards the smallest p-value (called a step-up method), or starting 
from the smallest p-value and working up (called a step-down method). 

Each sequential p-value method tends to be different, and rarely do they offer any 
immediate insight into exactly what they are accomplishing. This is really what a sequential 
p-value method tries to do: using the observed data, it estimates the rejection region so 
that on average the error rate is less than or equal to a. Thus, a sequential p-value method 
is really an estimation problem. The estimation is made in the FWER case so that the long 
run frequency that the method yields a false positive is less than or equal to a. In the FDR 
case, it is made so that the long run frequency of false positives to total number of rejected 
hypotheses is less than or equal to a. 

At the end of a sequential p-value method, we are given an estimate k that tells us 
to reject P(i),P( 2), ... ,P(i.)• where P(l) ~ P( 2) ~ ..• ~ P(n) are the ordered, observed p­

values. What can we say about k? Is there any natural way to provide an error measure 
on this random variable? Usually the answer is "no" because the method to obtain k is too 
complicated. Even if we did have a measure of the variance of k, what would this really 
mean? It is a false sense of security in multiple hypothesis testing to think that we have 
a 100% guaranteed upper bound on the error. The reality is that this process, like any 
other process in statistics, involves estimation. The more variable the estimate of k is, the 
worse the procedure is going to work in practice. Therefore, the expected value may be 
that FWER ~ a: or FDR~ a:, but we do not know how reliable the methods are on a case 
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by case basis. If point estimation only involved findin~ unbiased estimators, then the field 
wouldn't be so successful. Therefore, the reliability of k on a case by case basis does matter 
even though it has not been explored. 

Another weakness of multiple hypothesis testing methods is that they try to control the 
error rate for all values of n0 . Surely there is information about no in the observed p-values . 
Why not use this information, which will yield a less stringent procedure and more power? 
Often, the power of the multiple hypothesis testing method decreases with increasing n. 
This should not be the case, especially when the tests are independent. The larger n, the 
more information we have about no, and this should be used. 

In this paper, we propose a new approach to multiple hypothesis testing. We attempt 
to use more traditional and straightforward statistical ideas to control the error rate of 
a multiple hypothesis testing procedure. Instead of fixing o: and then estimating k (i.e., 
estimating the rejection region), we fix our rejection region and then estimate o:. Then a 
number of rejection regions can be examined and o: estimated from each one. A natural 
objection to this approach is that it does not offer an upper bound on the error rate. 
Actually, an upper bound is offered in the same sense as the former approach - if we had an 
infinite number of data sets, then we could get the exact, conservative estimate. Moreover, 
since in using this new approach we are in the more familiar point estimation situation, we 
can use the data to estimate no, get confidence intervals on our estimate of the error, and 
gain flexibility in the definition of the error measure. 

We will show that our proposed approach is more effective, flexible, and powerful. The 
multiple hypothesis testing methods we will describe take advantage of more of the infor­
mation in the data, and they are much simpler to understand. In the next section we more 
thoroughly discuss the False Discovery Rate (FDR); we also propose a new definition of the 
FDR. In Section 3 we formulate our approach in the context of the FDR. Section 4 makes 
a heuristic comparison between the proposed method and that of Benjamini and Hochberg 
(1995). Section 5 describes several theoretical results pertaining to the proposed approach. 
Section 6 gives a maximum likelihood estimate interpretation. Section 7 provides numerical 
results, comparing our method to the old method. Section 8 considers some practical issues 
of our method. Section 9 describes a quantity called the q-value, which is the FDR analogue 
of the p-value. Section 10 is the discussion and briefly mentions several possible extensions 
and applications our approach. Finally, Section 11 provides proofs and technical comments 
of our results. 

2. The False Discovery Rate 

As mentioned in the introduction, there are two error measures commonly used in mul­
tiple hypothesis testing: the Family Wise Error Rate (FWER) and the False Discovery 
Rate (FDR) . The FWER is the traditional measure used; Benjamini and Hochberg (1995) 
recently introduced the FDR. The following table summarizes the various outcomes that 
occur when testing n hypotheses. 

Accept Reject Total 
Null '!rue u V no 

Alternative '!rue T s n1 

n-R R n 
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Note that V is the number of Type I errors (or false positives). Therefore, the FWER is 
defined to be Pr(V ~ 1). Controlling this quantity offers a very strict error measure. In 
general, as the number of tests increases, the power decreases when controlling the FWER. 
Benjamini and Hochberg (1995) defined the FDR to be 

(1) 

that is, the expected proportion of false positives among all rejected hypotheses. Benjamini 
and Hochberg (1995) and Benjamini and Liu (1999) provide sequential p-value methods 
to control this quantity. The FDR offers a much less strict multiple testing criterion, and 
therefore leads to an increase in power. 

Large data sets are becoming much more common, where essentially thousands of hy­
pothesis tests have to be performed. Two such examples are wavelet analysis and genomics. 
In wavelet analysis, one is often faced with the task of finding as many non-zero coefficients 
as possible, without choosing too many truly zero coefficients. Therefore, the FDR has 
been useful in developing strategies for choosing many coefficients, among which only a 
certain fraction are truly zero (Abramovich and Benjamini 1996, and Abramovich et al. 
2000). DNA microarrays are one of several new biotechnologies that allow one to perform 
genome-wide experiments. In particular, microarrays allow the measurement of the expres­
sion levels of thousands of genes simultaneously. Tusher et al. (2001) use the FDR as the 
error controlling method for testing whether over 6000 genes have a difference in expression 
level between treated and untreated cells. Therefore, the FDR is definitely of interest to 
the statistics and scientific community. 

The definition of the FDR given above is not entirely satisfactory because a problem 
arises when R = 0. This leads to two natural choices for the FDR. Benjamini and Hochberg 
(1995) chose to use the definition 

E [~IR > 0] Pr(R > 0) (2) 

because this definition can be controlled by a sequential p-value method. Note however 
that weak control of the FWER is implicitly embedded in this definition. We will use the 
following definition 

(3) 

Benjamini and Hochberg did not use our definition because this quantity is identically 
1 when all null hypotheses are true. Recall that the purpose of this paper is to present 
methodology that fixes the rejection region and estimates the error rate. Therefore, the 
concern of Benjamini and Hochberg (1995) is not the case here. In Storey (2001), we 
make an argument for using the latter definition of the FDR. The Benjamini and Hochberg 
definition can be thought of as "the rate that false discoveries occur", whereas the latter 
definition can be thought of as "the rate that discoveries are false." Storey (2001) argues 
that in most situations, one is not interested in cases where no discoveries occur. Thus, we 
suggest using the second, more appropriate definition. We follow that line of reasoning in 
this paper and define the FDR as the following. 
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DEFINITION 1. We define the False Discovery Rate - the rate that discoveries are false 
- to be: 

(4) 

For notational convenience denote Benjamini and Hochberg's definition of the FDR as 
FDRnHi FDR will always refer to the new definition. 

3. The New Approach Applied to the FDR 

In this section, we will show how the proposed approach to multiple hypothesis testing 
can be applied to the FDR. We first have to present a few simple facts about FDR under 
independence. 

Suppose we are testing n identical hypothesis tests H1 , H2, ... , Hn with independent 
statistics X 1, X 2 , ... , X n · We let Hi = 0 when null hypothesis i is true, and Hi = l 
otherwise. The tests are "identical" in that the XilHi are identically distributed. Therefore, 
the same rejection region is used for each test. We assume that the Hi are independent 
Bernoulli random variables with Pr(Hi = 0) = 1ro and Pr(Hi = 1) = 1r1. Also, let r be the 
rejection region for each hypothesis test. 

The following theorem is a modification of Theorem 1 from Storey (2001). It allows us 
to write the FDR in a very simple form that does not depend on n . Note that if we want to 
assume the number of true null hypotheses no is fixed, we set 1r0 = n0 /n - Theorem 1 still 
holds under this modification . Therefore, we will assume without loss of generality that the 
Hi are random variables as described above. 

THEOREM 1. Suppose n identical simple hypothesis tests are performed with the i.i.d. 
statistics X1 , ... ,Xn and rejection region r . Also suppose that a null hypothesis is true 
with a priori probability 1ro. Then 

FDR(f) = 1ro · Pr(X E f!H = 0) 
Pr(X E f) ' 

(5) 

where Pr(X E f) = 1r0 · Pr(X E flH = 0) + 1r1 · Pr(X E flH = 1). 

This paper will be limited to the case where we reject based on independent p-values. 
See Storey and Tibshirani (2001, in preparation) for a treatment of more general situations. 
It follows that for p-value based rejections, all rejection regions are of the form (0, ,] for 
some , 2::: 0. (See Remark 1 in Section 11 for a justification of this.) For the remainder 
of the paper, instead of denoting rejection regions by the more abstract r, we will denote 
them by,, which refers to the interval [0,,] . 

We say the tests are identical in the sense that each test has the same rejection region. 
Therefore, in terms of p-values we can write the result of Theorem 1 as 

FDR( ) = 1ro · Pr(P :S ,IH = 0) = 1ro · 1 
1 Pr(P :S ,) Pr(P :S ,) ' 

(6) 

where P is the random p-value resulting from any test. Note that under independence 
the p-values are exchangeable in the sense that each comes from the null distribution (i.e., 
Uniform(0,1)) with probability 1r0 and from the alternative distribution with probability 1r1 • 
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It is easiest to think about this in terms of simple versus simple hypothesis tests, but the 
reasoning can be extended to composite alternative hypotheses. See Remark 2 in Section 
11 for more on this. 

Since rr0 ·n of the p--values are expected to be null, then under mild conditions the largest 
p-values are most likely to come from the null, uniformly distributed p-values. Hence, a 
good estimate of rro is 

~ #{Pi> ,8} 
rro = (1 - ,B)n (7) 

for some well chosen ,8, where p 1 , ... ,Pn are the observed p-values. In this paper, we let 
(3 = 1/2. (For now we assume that (:J is fixed, however, it makes sense that ,8 can be chosen 
in some optimal way based on the observed data. This point is discussed more in Section 
8.) Efron et al. (2001) use a similar estimate of rr0 in an empirical Bayes method that is 
directly related to the FDR. 

A natural estimate of Pr(P ~ -y) is 

Pr(P ~ 'Y) = #{Pi~ 'Y}. 
n 

(8) 

Therefore, our overall estimate of the FDR is 

FDR('Y) = _ rro · 'Y = #{Pi > ,8} · 'Y . 
Pr(P ~ -y) #{Pi ~ 'Y} · (1 - ,8) 

(9) 

We summarize our proposed approach to multiple hypothesis testing in the context of the 
FDR below. 

Proposed Approach Using the FDR 
(a) For then hypothesis tests, calculate their respective p-values p 1 , .•. ,Pn· 
(b) Fix ,8 at say ,8 = 1/2 or some other reasonable choice, such as the median of the 

p-values. 
(c) Form the estimates of rr0 and Pr(P ~ -y) as 

~ _ #{Pi > ,8} d p- (P < ) _ #{Pi ~ 'Y} 
rro - (l _ ,B)n an r _ 'Y - n . 

(d) For any rejection region of interest [0,-y], the estimated FDR over that region is 

FDR('Y) = - 1ro. 'Y = #{Pi> ,8} . 'Y . 
Pr(P ~ -y) #{Pi~ -y} · (1 - ,8) 

(e) If FDR('Y) > 1, set FDR('Y) = 1. 

A similar approach can be taken for the FWER, FDRBH, or any other multiple hypoth­
esis testing error measure. It is likely that for a large number of hypothesis tests (where 
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this approach is most appropriate), one would be interested in the FDR as we defined it. 
We mention briefly in Section 10 the proposed approach taken for other error measures. 

Even though the estimate of the FDR presented in this section is new, the approach 
has implicitly been taken before. Yekutieli and Benjamini (1999) introduced the idea of 
estimating the FDR under dependence within the Benjamini and Hochberg (1995) frame­
work. Tusher et al. (2001) take the approach mentioned here - they fix the rejection region 
and estimate the FDR. In a sense, this paper is a formalization and refinement of their 
approach to multiple hypothesis testing. Also, Efron et al. (2001) implicitly take this ap­
proach and use a very similar estimate within an empirical Bayes framework. One can see 
from Theorem 1 how our definition of the FDR can be written in a Bayesian form (Storey 
2001). 

4. A Connection Between the Two Approaches 

In this section we present a heuristic connection between the sequential p-value method 
of Benjamini and Hochberg (1995) and the approach presented in the previous section. 
The goal is to provide insight into the increased power and effectiveness of our proposed 
approach. 

The basic point we will make is that using the Benjamini and Hochberg (1995) 
method to control FDRBH at level a./1r0 is equivalent to (i.e., rejects the same 
p-values as) using the proposed method to control FDR at level a. The gain in 
power from our approach is clear - even though FDR 2: FDRBH, we control a 
smaller error rate (a ~ a/1r 0 ), yet reject the same number of tests. 

Let P(l) ~ ... ~ P(n) be the ordered, observed p-values for then hypothesis tests . The 
method of Benjamini and Hochberg (1995) finds k such that 

k = max{k : P(k) ~ k/n · a}. (10) 

Rejecting P(i), ... ,P(f) provides FDRBH ~ a. (See Genovese and Wasserman (2001) for a 
thorough analysis and interpretation of this sequential p-value method.) 

Now suppose we use our method and take the most conservative estimate 1i'o = 1. Then 
the estimate FDR is less than or equal to a if we reject P(i), . .. ,P(m) such that 

m = max{m: FDR(p(m)) ~ a} . 

But since FDR(p(m)) = "C,:J;;> this equivalent to (with rr0 = 1) 

m = max{m: P(m) ~ m/n · a}. 

(11) 

(12) 

Therefore, k = m when rr0 = 1 even though FDRBH ~ FDR. Moreover, if we take the 
better estimate 

~ #{Pi> ,B} 
7ro = (1 - ,B)n 

(13) 

then m 2: k, and with high probability m > k. 
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Therefore, we have shown that m ~ k even though FDRBH ~ FDR. In other words, 
using our approach, we reject a greater number of hypotheses while controlling an error 
measure FDR that is greater than or equal to FDRBH· This leads to greater power while 
controlling an error rate that is larger yet more appropriate. If we wanted to apply our 
approach to FDRBH, we would take as our estimate 

(14) 

Note that the term (1-(1-,)n) is a conservative estimate of Pr(R > 0) in FDRBH· This 
clearly leads to an increase in power over the Benjamini and Hochberg (1995) method. 

Recall that in calculating FDR the rejection region is fixed. Our comparison is not com­
pletely rigorous since it is unknown whether rejecting P(i), ... , P(m) provides that FDR~ o:. 
(Numerical evidence that it does, however, is presented in Section 9.) Nevertheless, one can 
arrive at the Benjamini and Hochberg (1995) algorithm using our results and the most con­
servative estimate of 1r0 . Note that the exact same conclusion would be reached if we took 
the opposite approach and used the Benjamini and Hochberg (1995) algorithm to estimate 
the FDR, thereby comparing the two approaches. 

5. Theoretical Results 

In this section, we will provide finite sample and large sample results for FDR.(,). Our 
goal of course is to provide a conservative estimate of FDR(,). In other words we want 
FDR(,) ~ FDR(,) as much as possible without being too conservative. The following 
result addresses the finite sample issue ofE[FDR.(,)] and its relationship to FDR(,). 

THEOREM 2. For fixed /3 it follows that 

E[FDR.(,)] ~ FDR(,). (15) 

Therefore, this theorem tells us that the expected value of our estimate is always greater 
than or equal to the true FDR. This is a comparable result to showing under the former 
approach that a sequential p-value method controls the FDR. Note that our methodology 
is especially suited for a large number of hypothesis tests, such as would be encountered in 
genomics or wavelets. Point estimates from very small samples are quite dangerous anyway, 
but the same caveat holds for many sequential p-value methods since these methods also 
involve estimation. 

We can also get a large sample result for FDR.(,). The tightness to which FDR.(,) 
converges to an upper bound of FDR(,) largely depends on how power changes with Type 
I error. To this end, let g(o:) be the power as a function of Type I error o:. For n identical 
tests, g(o:) is the same for each test. If the alternative hypothesis is composite, then g(o:) 
must be defined as the appropriate mixture - see Remark 2 in Section 1 l. We assume 
without loss of generality that g(O) = 0 and g(l) = l. Also, recall /3 is the paramter used 
in the estimation of 1ro. 

THEOREM 3. For fixed /3 we have 

l-g(/3) 
- 7ro + I 13 • 7r1 

lim FDR(,)= - FDR(,)~ FDR(,) 
n-+oo 7ro 

(16) 

almost surely. 
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smaller as {3 ~ 1. The line has slope equal to limp ..... 1 
1~:~>, which is the smallest value of 1~:~> 

that can be attained for concave g. 

This theorem can be understood graphically in terms of the plot of power to Type I 
error for each rejection region [O, ,B]. The function g(f:J) gives the power over the rejection 
region [O, ,B], and of course the Type I error over this region is [:J. The estimate of ?ro is taken 
over the interval [f:J, 1], so that 1 - g(f:J) is the probability of a p-value from the alternative 
distribution falling into [,B, l]. Likewise, 1 - ,B is the probability of null p-value falling into 
[f:J, l]. The estimate of ?ro is better the more g(f:J) > [:J. This is the case since the interval 
[,B, l] will contain less alternative p-values, and hence the estimate will be less conservative. 
Figure 1 shows a plot of g(f:J) versus f:J for a concave g. For concave g, the estimate of ?ro 

becomes less conservative as f:J -t l. This is formally stated in the following corollary. 

COROLLARY 1. For concave g 

inf lim FDR('Y) 0:4· lim lim FDR('Y) 0:4· ?ro + g'(l) · ?ri FDR('Y), (17) 
f3 n-too /3-tl n-too ?ro 

where g'(l) is the derivative of g evaluated at 1. 

In other words, the right hand side of equation (17) is the tightest upper bound FDR( 'Y) 
can attain on the FDR as n -t oo for concave g. The corollary can be seen graphically 
in Figure 2. A plot of 1 ~~~) versus f:J is shown for a concave g. It can be seen that the 
minimum is obtained at f:J = l. The minimum value is g'(l), which happens to be 1/4 
in this graph. Whenever the rejection regions are based on a monotone function of the 
likelihood ratio between the null and alternative hypotheses, g is concave. Note that if g is 
not concave, then the optimal f:J used in the estimate of ?ro may not be 1. 
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Fig. 2. A plot of 1~:<[> versus (3 is shown for a concave g. It can be seen that the minimum is 
obtained at (3 = 1 with value g'(l) = 1/4 . 

A nice property of this last result is that g'(l) = 0 whenever testing a single parameter 
of an exponential family. Therefore, in many of the common cases, we can get exact 
convergence as /3 --+ 1. 

6. FDR,( 'Y) is a Maximum Likelihood Estimate 

The approach proposed in this paper involves estimating the FDR. A sensible place to 
start would be to find the maximum likelihood estimate of FDR('y). Using the notation 
of the previous section , we have that Pr(P ~ 'YIH = 0) = 'Y, Pr(P ~ 'YIH = 1) = g('y), 
and Pr(H = O) = 1r0 • Also, for notational convenience we will let F('y) = Pr(P ~ 'Y), 
X = #{Pi : Pi ~ 'Y}, and Y = #{Pi : Pi > /3}. We are interested in finding maximum 
likelihood estimates of 1ro and F('y), so that we may combine them to find a maximum 
likelihood estimate of FD R('y). It simply follows that the likelihood of the data can be 
written as 

F('y)x · (1- F('Y)t-x = [1ro · 'Y + (1 - 1ro) · g('Y)t[l - 1ro · 'Y - (1 - 1ro) · g('Y)t-x . (18) 

Regardless of our knowledge of g, the maximum likelihood estimate of F('y) is 

- X F('y) = -. 
n 

(19) 
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H g is known , the maximum likelihood estimate of rr0 is 

F(-y) - g('Y) 
rro = 'Y _ g('Y) 

X/n - g(-y) 
'Y - g('Y) 

Therefore, when g is known, the mle of FDR('Y) is 

FDR(-y) = ~ -'Y = [X/n - g('Y~-y 
F('Y) b- g(-y)Jn 

(20) 

(21) 

The behavior of this estimate should be good for large n since it is consistent and efficient. 
Recall that in Section 3 we introduced the estimate 

--- y --- rro · 'Y - · 'Y FDR("') - -- - -=n--= 
I - F('Y) - (1 - .B) . ~' (22) 

where rro = n-(i-.B) served as our estimate of rro. This different estimate was used because 
we did not assume that g was known. Ideally, we would like to find mle's of both rr0 and 
g('Y) when g(-y) is unknown. Since F(-y) = X/n regardless of the knowledge of g, it follows 
that the mle of g('Y), say g('Y), and n0 would have to satisfy the equation 

no· 'Y + (1 - no)· g(-y) = X. 
n 

(23) 

This is one equation with two unknowns, so it is impossible to find both mle's simultaneously. 
Therefore, our remedy was to find a conservative estimate of rr0 • Note that when we observe 
the p-values p1 , ... ,Pn, we can form any reject region [O,,BJ. Also note that 

1 - F(,B) + 1 - g(,B) (l ) 
1 - .B = rro 1 - .B . - rro . (24) 

Without knowing g we can form the mle of 1~~Jf> as Y/n. Therefore, we are estimating a 
parameter with conservative bias over rr0 of size 

1 - g(,B). (1 - ) 
1 - .B rro . (25) 

One could choose .B = 'Y, however this does not have to be the case. Since 1~!._~) usually 
gets smaller as .B gets larger, it may be better to take a larger .B than 'Y, because 'Y will 
likely be very small. 

Therefore, the estimate FDR( 'Y) is the maximum likelihood estimate of 

7f + 1-g(,B) • 7f 
o 1-/3 i FDR('Y), 

rro 
(26) 

a quantity slightly greater than F DR('Y). In situations where g is unknown, this estimate 
is, loosely speaking, "optimal" in that the bias can usually be made arbitrarily small (see 
Corollary 1), while obtaining the smallest asymptotic variance for an estimator of that bias. 

Moreover, the variance of FDR(-y) should not be that different than that of FDR('Y) for 
large n and powerful tests. 
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One criticism of the current approach to multiple hypothesis testing that we have made 
is that the variability of the estimated rejection region resulting from a sequential p-value 
method is not calculated. Even if it is calculated, it is hard to interpret what Var(k) means 
in terms of the effectiveness of the sequential p-value method. The only property of k that 
is assessed is that the expected error rate is less than or equal to a under k. 

Using our approach, the variance of FDR(,) can easily be calculated. In a paramet­
ric situation where g is known, one can calculate Var(FDR(,)) either in the finite sam­
ple or asymptotic sense. If g is unknown , the bootstrap can be employed to estimate 
Var(FDR(,)). Nonetheless, we are guaranteed that as n gets large a minimum variance is 
attained. 

7. A Numerical Comparison 

In this section we present some numerical results in order to compare the power of the 
Benjamini and Hochberg (1995) approach to our proposed approach. As mentioned in 
the last section, it is not straightforward to compare these two methods since the former 
estimates the rejection region while the latter estimates the FDR. From Theorem 1, it can 
be seen, however, that there is a one to one correspondence between the rejection region 
(parameterized by I as before) and its corresponding FDR(,). Therefore, we will look at 
the two values 1 = 0.01525, 0.001 and the corresponding FDR(,) over several values of 1r0 • 

The values of I were chosen in order to cover a wide variety of FDR values . 
We will denote the results from the proposed method as "PM", and from the Benjamini 

and Hochberg method as "BH" . For each value of I and rro it is possible to calculate 
FDR( 1 ). From this we will calculate the resulting average power for BH controlling the 
FDR at level FDR(,) . Likewise, we will calculate the average power resulting from PM 
over the rejection region [O, 1]. Recall that the FD REH ~ FDR so that forcing the BH 
method to control the FDR at level FDR(,) only helps the BH method. 

In the following simulation we performed n = 1000 hypothesis tests of µ = 0 versus 
µ = 2 for i.i.d. random variables Zi "'N(µ, 1), i = 1, ... , 1000, over 1000 iterations. The 
null hypothesis for each test is that µ = 0, so the frequency of Zi "' N(0, 1) was set to 
1r0 ; hence, 1r1 of the statistics have the alternative distribution N(2 , 1). For each test the 
p-value is defined as Pi = Pr(N(0, 1) ~ Zi), where Zi is the observed value of Zi . In order 
to calculate the power of PM, test i was rejected if Pi ~ 1 , and the power was calculated 
accordingly. From the observed p-values, the BH method was performed at level FDR(,), 
and the rejection region was estimated from the data. The power is calculated from this 
estimated rejection region. This simulation was performed for rro = 0.1, 0.2, .. . , 0.9. The 
corresponding FDR's the BH procedure was used to control are listed in Table 1; these 
FDR's are calculated using Theorem l. Two other measurements were also taken - the 
estimate FDR(,) for PM, and the estimate 9 for BH. 

Even though in this situation we know the alternative distribution of the p-values, we 
did not use this knowledge. Instead, we estimated the FDR as if the alternative distribution 
was unknown. (This should also help the BH method in the comparison.) Therefore, we 
had to choose a value of f3 in order to estimate 1r0 ; we used f3 = 1/2 in all calculations. 

Table 1 shows the results of the simulation study . The first half of the table corresponds 
to 1 = 0.01525, and the second half corresponds to 1 = 0.001. It can be seen that there is 
a substantial increase in power using the proposed method . One case even gives an 1100% 
increase in power. The power is constant over each case of PM because the same rejection 
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Table 1. A numerical comparison between the BH and proposed methods 

11"0 FDR Power E[FDR] E(io] E(7] 
(PM) (BH) (PM) (BH) (PM) (BH) 

1 = 0.01525 
0.1 0.004 0.435 0.068 0.005 0.0003 0.141 0.0002 
0.2 0.008 0.435 0.134 0.010 0.002 0.237 0.0009 
0.3 0.015 0.436 0.191 0.016 0.004 0.331 0.002 
0.4 0.023 0.435 0.236 0.024 0.009 0.428 0.003 
0.5 0.034 0.435 0.277 0.035 0.017 0.521 0.004 
0.6 0.050 0.435 0.315 0.052 0.030 0.618 0.006 
0.7 0.076 0.435 0.347 0.077 0.053 0.713 0.008 
0.8 0.123 0.436 0.377 0.124 0.098 0.807 0.010 
0.9 0.240 0.435 0.406 0.243 0.216 0.902 0.012 

1 = 0.001 
0.1 0.0008 0.138 0.011 0.001 8 X 10-o 0.141 7 X 10-o 
0.2 0.002 0.138 0.026 0.002 0.0004 0.237 3 X 10- 5 

0.3 0.003 0.139 0.041 0.003 0.001 0.331 8 X 10- 5 

0.4 0.005 0.138 0.056 0.005 0.002 0.428 0.0001 
0.5 0.007 0.138 0.071 0.008 0.003 0.521 0.0002 
0.6 0.011 0.139 0.087 O.Qll 0.006 0.618 0.0003 
0.7 0.Q17 0.138 0.101 0.017 0.013 0.713 0.0005 
0.8 0.028 0.138 0.116 0.029 0.022 0.807 0.0006 
0.9 0.061 0.138 0.129 0.065 0.059 0.902 0.0007 

region is used . The power of BH increases as 7l'o gets larger because the procedure becomes 
less conservative . In fact, it can be shown from Section 4 that as 7l'o -+ 1, the BH method 
becomes the PM method. 

The fifth column of Table 1 shows E[FDR] for PM . It can be seen that this is very close 
to the true FDR (usually within 0.1%), and it is always conservative. The PM method is 
nearly opt imal in that it estimates the FDR(,) basically as close as conservatively possible 
for each rejection region. Therefore, we essentially lose no power regardless of the value 
of 7l'o- Moreover the method gets better as the number of tests increases; the opposite has 
been true in the past. The seventh column shows E[rro] for PM . It can be seen that this 
estimate is always conservative and very close to the actual value. 

The sixth column shows E[FDR] for BH. This was calculated in the following way. The 
BH method finds k and rejects P(l) , .. . ,P(k) " This yields an observed false discovery for 

each iteration . Averaging over all iterations yields E[FDR] for BH. It can be seen that 
E[FDR] < FDR(7) as is expected, however, as 7l'o gets smaller, the estimate becomes more 
and more conservative. This can also be seen in the eighth column in that the average 
estimate rejection region E[::Y] is much smaller than the true 'Y leading to a decrease in 
power. 

The power comparisons are also shown graphically in Figure 3. The success of this 
method largely depends on how well we can estimate FDR( 'Y). It is seen in this simulation 
that the estimates are very good. This is especially due to the fact that the power-Type I 
error curve is well behaved in the sense discussed in Section 5. Another consideration that 
must be taken into account is the variance of FDR( 'Y). This is discussed in Section 8 along 
with several other related topics. 
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Fig. 3. A plot of average power versus 1ro for the BH method (BH) and the proposed method (PM). 
The left panel is the case where the rejection region is defined by, = 0.01525, and the right panel 
where , = 0.001. It can be seen that there is a substantial increase in power under the proposed 
method in both situations. 



A New Approach to False Discovery Rates 15 

An additional numerical comparison is made in Section 9. In that comparison, we force 
our estimate into the BH paradigm where the rejection region is estimated. Therefore the 
comparison is perhaps more direct there. Nevertheless the results are very similar, and the 
proposed method yields a substantial increase in power. 

8. Practical Considerations and Questions 

In this section we consider several practical issues of our proposed method. There are many 
other details that should be investigated in future work, and we describe some of them here. 

8. 1. Choosing f3 
As was previously mentioned, a parameter f3 must be chosen in estimating rr0 , the frequency 
of true null hypotheses. Recall that our estimate is 

~ #{Pi> ,8} 
rro = (1 - f3)n · (27) 

There is an obvious trade-off in the choice of ,8. When f3 is small, our estimate is too 
conservative but very stable. The opposite is true when ,B is large. Therefore, we want to 
choose ,B so that the estimate 7?0 is not too conservative, yet fairly stable. 

Throughout this paper, we have used ,B = 1/2 simply because it ensures that neither the 
bias nor the variance of 7?o is too great. In order to automate this choice in a robust way, 
we suggest letting ,B be the median of the observed p-values. If the null p-values happen to 
be well behaved in the observed data, then taking ,B to be the median should not be that 
different than taking ,B = 1/2. The case we want to guard against is if all p-values happen 
to be close to zero in which case ,B = 1/2 would be a bad choice. Taking /3 to be the median 
guards against that situation. 

What we would really like to do is to pick /3 to minimize some criterion, such as mean 
squared error. Doing this in a parametric or non-parametric setting will be a topic in our 
future research (Storey and Tibshirani 2001, in preparation). 

8.2. FDR( 'Y) versus FDR( 'Y) 

In Section 6, we showed how FDR("!) and FDR("!) are both maximum likelihood estimates. 

FDR("!) is actually the mle of FDR("!), whereas FDR("!) is the mle of a slightly conser-------vative quantity. In order to calculate FDR("!) one has to know the power function g('Y). 
In terms of mean squared error, where both bias and variance play a role, it is unknown 

whether FDR("!) or FDR("!) is better. Note that in most situations FDR("!) should have 
a smaller variance. It would be interesting to characterize in terms of g('Y), when one es­
timate is better than the other. Also, there may be many other estimates that work well, 
and hopefully this will be investigated further. 

8.3. Calculating the Variance and Confidence Intervals for FDR(7) 
It is difficult to make general statements about Var(FDR(7)) when g, the power function, 
is unknown . Here, we will look at the variance from the numerical example in Section 
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Table 2. The variance of FDR 
7rO FDR E[FDR] Var[FDR] 7rO FDR E[FDR] Var[FD.R] 

"I= 0.01525 "I= 0.001 
0.1 0.004 0.005 3.41 X 10-, 0.1 0.0008 0.001 2.21 X 10-" 
0.2 0.008 0.010 7.08 X 10- 7 0.2 0.002 0.002 6.03 X 10-S 
0.3 0.015 0.016 1.40 X 10- 6 0.3 0.003 0.003 1.51 X 10- 7 

0.4 0.023 0.024 2.79 X 10- 6 0.4 0.005 0.005 3.50 X 10- 7 

0.5 0.034 0.035 6.35 X 10- 6 0.5 0.007 0.008 9.08 X 10- 7 

0.6 0.050 0.052 1.40 X 10- 5 0.6 0.011 0.011 2.18 X 10- 6 

0.7 0.076 0.077 3.38 X 10- 5 0.7 0.017 0.017 6.89 X 10- 6 

0.8 0.123 0.124 1.18 X 10- 4 0.8 0.028 0.029 2.84 X 10- 5 

0.9 0.240 0.243 8.26 X 10- 4 0.9 0.061 0.065 3.14 X 10- 4 

7. Table 2 lists the 9 observed variances of FDR('y) for , = 0.01525 and , = 0.001. It 
can be seen that the variances are of a reasonable size, and provide evidence that accurate 
estimates of the FDR can be made. 

Probably of equal interest to the variance is how to form confidence intervals for the FDR . 
In a fully parametric situation, realizations of FDR( 1) can be simulated and a confidence 
interval for it can be formed . It can even be analytically calculated based on the maximum 
likelihood theory presented in Section 6. 

The most likely situation is that the alternative distribution is unknown and we must 
form confidence intervals for FDR(,) non-parametrically. The approach we recommend 
here is to bootstrap the p-values. For the bth bootstrap sample we form FDR(,)*b, b = 
1, .. . , B. The desired confidence intervals and standard errors can be formed in the usual 
way (Efron and Tibshirani 1993). 

This technique works well even in situations in which the alternative hypothesis is com­
posite. In the same vein as Remark 2 in Section 11, we can regard the alternative p-values 
as coming from a mixture distribution over the parameters comprising the alternative hy­
pothesis. This is a natural way to regard the situation since in multiple hypothesis testing 
we treat the p-values as exchangeable random variables. Therefore, the observed p-values 
give us the empirical distribution of the mixture of null and alternative p-values, as well as 
the possible mixture of alternative p-values. 

9. The q-value 

We now introduce a natural FDR analogue of the p-value, which we call the q-value. This 
quantity was first developed and investigated in Storey (2001). The q-value gives the scien­
tist a hypothesis testing error measure for each observed statistic with respect to the FDR. 
The p-value accomplishes the same goal with respect to Type I error, and the adjusted 
p-value with respect to the FWER. We first introduce the q-value in the context of the 
hypothesis tests performed in Section 7 in the following example . 

9. 1. Example: Testing the Mean of a N (µ, 1) Random Variable 
Suppose we perform n hypothesis tests ofµ= 0 versusµ= 2 for n independent N(µ, 1) ran­
dom variables Z1, ... , Zn. Given we observe the random variables to be Z1 = z1, .. . , Zn= 
Zn, the p-value of Zi = Zi can be calculated as Pi = Pr(Z ~ zilH = 0). In other words, 
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it gives the probability of a Type I error if we reject any statistic as extreme or more ex­
treme than Zi. Likewise, if n0 of the null hypotheses are true, then the adjusted p-value is 
Pi = l - (1 - Pi)n°. This quantity gives the FWER if we reject any statistic as extreme or 
more extreme than Zi among all n hypotheses . 

Now suppose we want to know the FDR if we reject any statistic as extreme or more 
extreme than Zi among all n hypotheses. By Theorem 1, it follows that it is 

noPr(Z ~ zilH = 0) 
qi= ----------'----'----'------- . 

noPr(Z ~ zilH = 0) + (n - no)Pr(Z ~ zilH = 1) 
(28) 

It can be seen that qi is a natural FDR analogue to both the p-value and the adjusted 
p-value. The relationship between these three quantities Pi,Pi, qi can also be understood 
graphically. Figure 4 shows a graph of the N(0, 1) and N(2, 1) distributions with the point 
Zi = Zi marked with a vertical line. The area under the N(0, 1) density to the right of the 
cutoff is Pi· To get the adjusted p-value of Zi, we have to take into account how many null 
hypotheses there are. Therefore, we use this area and n0 to get Pi as above. In order to 
calculate qi, we need to know both Pi and the area under N(2, 1) to the right of the cutoff, 
which is the power. Thus, we use these two quantities plus no to calculate qi. 

As will be shown below, qi is what we call the q-value of Zi = Zi- In many situations, it 
is the FDR obtained when rejecting a statistic as extreme or more extreme than Zi among 
all n hypotheses. It is helpful to consider this simple example as we formally introduce the 
q-value . 

9.2. Definition of the q-value 
Even though we are only considering hypothesis testing with independent p-values, it helps 
to formally introduce the q-value in a general setting in order to better motivate its defi­
nition. We will later define the q-value in terms of p-values. For a nested set of rejection 
regions {r} (in the previous example, {r} is all sets of the form [c, oo) for -oo ~ c ~ oo), 
the p-value of an observed statistic X = x is defined to be 

p-value(x) = min Pr(X E r!H = 0). 
{r :xEf} 

(29) 

This quantity gives a measure of the strength of the observed statistic with respect to 
making a Type I error - it is the minimum Type I error rate that can occur when rejecting 
a statistic with value x for the set of nested rejection regions . In a multiple testing situation, 
one can adjust the p-values of several statistics in order to control the FWER. The adjusted 
p-values give a measure of the strength of an observed statistic with respect to making one 
or more Type I error. In an effort to develop a similar concept for the FDR, we make the 
following definition. 

DEFINITION 2. For an observed statistic X = x define the q-value of x to be: 

q-value(x) = min FDR(r). 
{r : xEr} 

(30) 

In words, the q-value is a measure of the strength of an observed statistic with respect to 
the FDR - it is the minimum FDR that can occur when rejecting a statistic with value x 
for the set of nested rejection regions. 
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Fig. 4. A plot of the N(O, 1) and N(2, 1) densities . The vertical line denotes the observed statistic 
z = z. The p-value and adjusted p-value can be calculated from the area under the N(O, 1) density 
to the right of Z = z. The q-value is calculated using the area under both densities to the right of 
Z=z. 
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The definition is simpler when the statistics are independent p-values. Firstly, the nested 
set of rejection regions take the form (0, -y] and the FDR can be written in a simple form. 
Therefore in terms of independent p-values, the following is the definition of the q-value of 
an observed p-value p. 

DEFINITION 3. For a set of hypothesis tests conducted with independent p-values, the 
q-value of the observed p-value p is 

A natural property to determine is when it is the case that 

that is, when the most intuitive definition holds that 

11"0. p 
q(p) = FDR(p) = Pr(P :5 p) 

(31) 

(32) 

(33) 

Storey (2001) answers this question with the following theorem . Recall that we let the 
function g(o:) be the power of each test when using rejection region [0, a]. 

THEOREM 4. The q(p) can be written as 

if and only if g is concave. 

9.3. The q-va/ue in practice 

7l"Q. p 
q(p) = FDR(p) = Pr(P :5 p) (34) 

According to Theorem 4, we should be able to write q(pi) in a very simple form for each 
p-value obtained in the numerical example considered in this paper since g is concave 
for likelihood ratio based tests. Note, however, that the result is for the true FDR, and 
monotonicity does not necessarily hold for the estimated FD R(pi). Moreover, it will often 
not be known whether g is a concave function. Therefore, we propose the following algorithm 
for calculating q(pi) in practice. This algorithm comes from the more general definition of 
the q-value. Recall that for any observed Pi we have FDR(pi) = nii'rpi . 

Calculating the q-value 
(a) For then hypothesis tests, calculate the p-values Pl, ... ,Pn· 
(b) Let P(l) :5 ... :5 P(n) be the ordered p-values. 

(c) Set q(p(n)) = FDR(p(n)) -

( d) Set q(p(i)) = min (FDR(p(i)), q(P(i+l))) for i = n - 1, n - 2, ... , 1. 
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Table 3. A comparison between the BH and proposed methods using the q-value 

71"0 FDR Power E[FDR] E[rro] E[9] 
(PM) (BH) (PM) (BH) (PM) (PM) (BH) 

'Y = 0.01525 
0.1 0.004 0.356 0.069 0.003 0.0002 0.141 0.009 0.0002 
0.2 0.008 0.398 0.134 0.007 0.002 0.236 0.012 0.0009 
0.3 0.015 0.411 0.188 0.013 0.004 0.331 0.013 0.002 
0.4 0.023 0.421 0.238 0.021 0.009 0.426 0.014 0.003 
0.5 0.034 0.426 0.278 0.032 0-017 0.523 0.014 0.005 
0.6 0.050 0.427 0.314 0.049 0.030 0.617 0.014 0.006 
0.7 0.076 0.433 0.348 0.074 0.053 0.713 0.015 0.008 
0.8 0.123 0.437 0.376 0.122 0.099 0.809 0.015 0.010 
0.9 0.240 0.442 0.411 0.238 0.216 0.905 0.015 0.012 

'Y = 0.001 
0.1 0.0008 0.102 0.012 0.0004 0.000 0.141 0.0005 7 X 10-<> 
0.2 0.002 0.120 0.026 0.001 0.0003 0.236 0.0007 3 X 10- 5 

0.3 0.003 0.127 0.041 0.003 0.001 0.331 0.0008 8 X 10- 5 

0.4 0.005 0.132 0.057 0.004 0.002 0.426 0.0009 0.0002 
0.5 0.007 0.136 0.071 0.007 0.004 0.523 0.0009 0.0002 
0.6 0.011 0.136 0.086 0.010 0.006 0.617 0.0009 0.0004 
0.7 0.017 0.139 0.101 0.016 0.012 0.713 0.0009 0.0005 
0.8 0.028 0.140 0.114 0.028 0.023 0.809 0.0009 0.0006 
0.9 0.061 0.149 0.136 0.056 0.050 0.905 0.001 0.0008 

This procedure ensures that q(P(i )) $ ... $ q(p(n)) , which is necessary according to our 
definition. The way that these q-values can be used in practice is in the following way. It 
gives us the minimum FDR we can achieve for rejection regions [0,P(i)] for i = 1, ... , n . In 
other words, for each p-value there is a rejection region with FDR equal to q(P(i)) so that 
at least P(i), ... ,P(i) are rejected. 

9.4. A Numerical Example of the q-value 
We will repeat the same numerical example done in Section 7, except here we will let the 
rejection region be based on the data. In other words, for a given a we will compare the 
power of the BH method controlling the FDR at level a with the power of the proposed 
method (PM) rejecting all q(pi) $ a. Note that we have not shown any theory that implies 
rejecting all q(pi) $ a yields FDR$ a, although this is conjectured . 

The set-up is the same as in Section 7. We are doing 1000 iterations of n = 1000 
tests ofµ= 0 versusµ= 2 for independent normal random variables Z1 , Z2, ... , Zn. For 
consistency , we fixed two rejection regions 1 = 0.01525, 0.001 as before , and calculated 
FDR(,) exactly based on the value of n0 • The two procedure were then applied to control 
the FDR at level FDR( 1 ). The format of Table 3 is the same as Table 1 in Section 7, except 
the column E[FDR] for PM corresponds to the calculated FDR under our current rejection 
scheme. Note that in all cases the FDR is controlled in the traditional sense under PM. 
Therefore , this provides evidence that our method also offers control of the FDR within 
the old paradigm. We have also included a column E[9] for PM that denotes the average 
rejection region "estimated" by our proposed method over the 1000 iterations. 

It can be seen from Table 3 that we maintain a significant increase in power using 
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Fig. 5. A plot of average power versus 7T'o for the BH method (BH) and the proposed method (PM) 
forced into the BH paradigm. The left panel is the case where the rejection region is defined by 
, = 0.01525, and the right panel where, = 0.001. It can be seen that there is a substantial increase 
in power under the proposed method in both situations. 

our method. The maximum power is almost attained, and we are only slightly below the 
true rejection region. The results for the BH method are very similar for this simulation 
because the rejection method is the same. Essentially, we have forced the old paradigm onto 
our method in this simulation, even though the theory behind our method does not apply 
towards this. Nonetheless, our method significantly outperforms the BH method. Figure 5 
also displays the results of the simulation graphically. 

10. Discussion 

In this paper, we have proposed a new approach to multiple hypothesis testing. Instead of 
setting the error rate and estimating the rejection region to control the error at a particular 
level, we have proposed fixing the rejection region and estimating the error rate. This 
approach allows a more straightforward analysis of the problem. We have seen that the 
result is a more powerful and applicable methodology. For example, we proposed a new 
definition of the FDR, one we feel is usually much more appropriate, and we successfully 
"controlled" it. By using theoretical results about the FDR with fixed rejection regions, we 
were able to derive a well behaved estimate of the FDR. Interestingly, the Benjamini and 
Hochberg (1995) step-up method naturally falls out of these results. 

After presenting our ideas about how to address the problem of multiple hypothesis 



22 John D. Storey 

testing, along with the discussion of the q-value, it is appropriate to reiterate exactly how 
we recommend applying these ideas. Our methodology has been developed in the context 
of a fixed rejection region. Therefore, for any rejection region [O, -y] we estimate the FDR 
as 

FDR(-y) = --7ro. 'Y . 
Pr(P $ -y) 

(35) 

Once we observe the p-values p 1 , ... ,Pn, it is clear that the rejection regions of interest 
are [0,Pi] with estimated FDR as FDR(pi) for i = 1, ... , n. Also, the q-value for each 
p-value q(pi) can be calculated, which is the FDR analogue of the p-value as explained 
in the previous section. We have shown in many cases q(pi) = FDR(pi) (Storey 2001), 
but this does not necessarily occur with observed data. For both quantities, FDR(pi) and 
q(pi), parametric or non-parametric methods can be applied to get confidence intervals and 
measures of standard error. 

Everything we have discussed in this paper has been under the assumption that we are 
working with independent p-values. In more general cases, such as with dependence or in 
non-parametric situations, it is possible to apply very similar ideas to get accurate estimates 
of the FDR. See Storey and Tibshirani (2001, in preparation) for a forthcoming treatment 
of this. There are several other open questions that this approach brings to light. For 
example, a theoretical investigation into Va:r(FDR('Y)) has not been performed. Other, 
better estimates of the FDR may be available. One could also possibly prove optimality 
theorems with respect to estimating the FDR within certain frameworks. 

We would like to briefly suggest how this approach could be applied to other error rates 
used in multiple hypothesis testing. For example, given there are n0 true null hypotheses 
and the rejection region [0, -y], the FWER is 1 - (1 - -y)no. This can be conservatively 
estimated by 1 - (1 - -y)n·iro. Therefore, rejecting all p-values less than or equal to Pi has 
estimated FWER 1 - (1 - Pi)n·iro. Using our approach, there is an increase in flexibility. 
For example, one may wish to use a "robust" measure of multiple testing error, say a{1r0 ) • 

FDR('Y) + (1 - a:(-1r0 )) · FWER('Y) for some function a(1r0 ). An obvious estimate for this 
error measure is to take the weighted average of the two suggested here. Most importantly, 
using our approach really opens the door to a much broader class of multiple testing error 
measures and procedures. 

In a very interesting paper, Friedman (2001) discusses the role statistics can play in 
the burgeoning field of data mining. Data mining involves investigating huge data sets 
in which "interesting" features are discovered. The classic example is determining which 
products tend to be purchased together in a grocery store. It is often the case that the 
rules for determining interesting features have no simple statistical interpretation. It is 
understandable that hypothesis testing has not played a major role in this field, because 
the more hypotheses one has, the less power there is to discover effects. The methodology 
presented here has the opposite property - the more tests we perform, the better the 
estimates are. Therefore, it is an asset under this approach to have large datasets with 
many tests. The only requirement is that the tests have to be exchangeable in the sense 
that the p-values ( or some transformation of the statistics) can be treated homogeneously. 

Even if the tests are dependent, our approach can be fully applied. It was shown in 
Storey (2001) that the effect of dependence is negligible if n is large enough, as long as the 
dependence is ergodic . Also, Storey and Tibshirani (2001) treat the case where dependence 
cannot be ignored or where it is infeasible to calculate p-values. Therefore, we hope that 
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this proposed multiple hypothesis testing paradigm is not only useful in fields like genomics 
or wavelet analysis, but also in the field of data mining where it is desired to find several 
interesting features out of many, while limiting the rate of false positives among these. 

11. Remarks and Proofs 

Remark 1: 
Here, we will explain why rejection regions for p-values should be of the form [0, -y]. 

Recall that for a nested set of rejection regions {r}, the p-value of X = x is defined to be 

p-value(x) = min Pr(X E rill= 0). 
{r::z:Er} 

(36) 

Therefore, for two p-values p1 and P'i, p1 $ P'i implies that the respective observed statistics 
x1 and x 2 are such that x 2 Er implies x1 Er. Therefore, whenever P2 is rejected, P1 should 
also be rejected. 

Remark 2: 
The results presented in this paper are done in the context of simple versus simple hy­

pothesis tests. Suppose instead that the alternative hypothesis is composite. If we view the 
realized parameters from the alternative distribution as being from a mixture distribution, 
then the results presented here continue to hold. For example, the probability Pr(P $ -y) 
is now not only a mixture of null and alternative p-values, but among the alternative p­
values, it is now the appropriate mixture. Also, the power to Type I error function g that 
was discussed in Section 3 is now also the appropriate mixture of the alternative parameter 
space. Recall that in multiple hypothesis testing the p-values are treated as exchangeable. 
Therefore, we also treat the alternative p-values as exchangeable, and it naturally follows 
to think of them as following a mixture distribution when the alternative hypothesis is 
composite. See Genovese and Wasserman (2001) for a similar argument. 

Proof of Theorem 1: 
First note that 

FD R(r) = E [~I R > o] (37) 

= t E [~IR = k] Pr(R = klR > 0) (38) 

= t E [:IR = k] Pr(R = klR > 0). (39) 

Since the statistics are independent, VIR = k is a binomial random variable with probability 
of success 

rro · Pr(X E rjH = 0) 
Pr(X Er) 

(40) 
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Therefore, 

FDR(I') 
n k. 1ro·Pr(XH!H=O) 

L Pr~XH) Pr(R = kjR > 0) 
k=l 

(41) 

?ro · Pr(X E I'IH = 0) 
= Pr(X Er) 

(42) 

Proof of Theorem 2: 
We will first prove the result conditional on n0 and n 1 , the number of null and al­

ternative hypotheses. Let X = #{null Pi : Pi > /3}, Y = #{null Pi : Pi $ ,}, and 
Z = #{alternative Pi: Pi$ 1}. Then 

FDR("')> X/(1- /3) · 1 . 
I - Y+Z (43) 

Conditioning on X, and using Jensen's inequality on Y + Z we get 

E [X/(1-/3) · ,1x] > X/(1-/3)., 
Y + Z - E(YIX) + E(Z). 

(44) 

Since E(YIX) = if (no - X), we get 

X/(1-/3)·, X/(1-/3)·, = .,...----,-----
E(YIX) + E(Z) if (no - X) + E(Z) 

(45) 

Using Jensen's inequality on X implies 

E [X/(1- /3) · '] > E(X)/(1 - /3). 1 
Y + Z - if (no - E(X)) + E(Z) 

(46) 

Therefore, 

- E(X)/(1 - /3) · 1 1ro · 'Y 
E[FDR(,)] ~ if (no - E(X)) + E(Z) = Pr(P $ ,) = FDR(,). (47) 

The result follows unconditionally on no by replacing no with the Binomial(n, 1r0 ) random 
variable N0 and applying Jensen's inequality one more time. 

Proof of Theorem 3: 
Recall that 

FDR(,)= _ 1ro · 'Y = #{Pi> /3}/n · 'Y . 
Pr(P $ 1 ) #{Pi$ ,}/n · (1- /3) 

(48) 

By the Strong Law of Large Numbers, Pi-(P $ 1) -+ Pr(P $ ,) almost surely. Also, 
Pr(P ~ /3IH = 0) = 1 - /3 and Pr(P ~ /3IH = 1) = 1 - g(/3), where g(/3) is the power 
of rejecting over (0, /3] as described in Section 3. Therefore, by the Strong Law of Large 
Numbers #{Pi ~ /3} /n -+ (1 - /3) · 1r0 + (1 - g(/3)) · 1r1 almost surely. Thus, it follows that 

( 1-g~) ) ~ 
lim FDR("')= ?ro + l- · 71"

1 
·' = ?ro + l-/3 · 71"

1 FDR("')>_ FDR("'). 
n~oo , Pr(P $ ,) ?ro , , (49) 
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Proof of Corollary 1: 

Since g(/3) is concave in /3, 1~!:_~) is non-increasing in {3. Therefore, the minimum of 
1~!_~) is obtained at lim,a--+1 

1~!:_~). By L'Hopital's rule, lim.B--+l 1
~:~) = g'(l). 
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