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Abstract 

In a classic two-sample problem one might use Wilcoxon's statistic to test for a difference 
between Treatment and Control subjects. The analogous microarray experiment yields thou­
sands of Wilcoxon statistics, one for each gene on the array, and confronts the statistician with 
a difficult simultaneous inference situation . We will discuss two inferential approaches to this 
problem: an empirical Bayes method that requires very little a priori Bayesian modeling, and 
the frequentist method of "False Discovery Rates" proposed by Benjamini and Hochberg in 
1995. It turns out that the two methods are closely related and can be used together to produce 
sensible simultaneous inferences. 
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1 Introduction 

Microarrays epitomize the high-throughput devices that are revolutionizing biomedical re­
search. They are also enlivening statistics. When applied in a comparative experiment, for exam­
ple comparing gene activity in tumor and normal cells, microarrays produce intriguing but difficult 
simultaneous inference problems. In the main example employed here, a rather typical microarray 
experiment, we will have more than three thousand Wilcoxon two-sample tests to consider at once. 

Two analyses will be discussed, a frequentist approach based on Benjamini and Hochberg's 
(1995) False Discovery Rate procedure, and an empirical Bayes methodology developed in Efron et 
al. (2000, 2001). The two approaches are closely related and can be used to support each other, 
which is the principal point of this paper. 

Hedenfalk et al. (2001) report on a microarray experiment concerning the genetic basis of 
breast cancer. It is known that unfavorable mutations of two different genes, BRCAl and BRCA2, 
lead to greatly increased breast cancer risk. How do the tumors resulting from the two different 
mutations differ in their genetic activity? To answer this question tumors from 22 women were 
analyzed, with seven of the women known to have the BRCAl mutation, eight known to have 
BRCA2, and seven, labeled "Sporadics", having neither mutation. Each woman's tumor cells were 
analyzed on a separate microarray plate that measured expression levels for 3226 genes. Table 1 
shows a small portion of the resulting 3226 x 22 data matrix. 

Here is a schematic description of the genetic technology behind the numbers in Table 1. The 
known DNA base sequences for each of the 3226 genes were printed at known positions on the 
microarray plates. (There were actually 5361 genes to begin with, only 3226 of which produced 
accurately readable results.) When the tumor cells were hybridized on a plate they generated 
messenger RNA in proportion to each gene's activity, producing a measurable expression level at 
its corresponding DNA plate location. The expression levels were optically read using a red dye for 
the effect of interest and a green dye for a background measurement employed as a control. The 
numbers in Table 1 are the logarithms of the ratio of red to green intensities measured at each gene 
location as described in detail in Figure 1 of Hedenfalk et al. (2001). Some adjustments were made 
to the raw ratios, see Remark A of Section 6. 

Table 1: A small portion of the data from a microarray experiment by Hedenfalk et al. (2001) 
concerning genetic activity differences in breast cancer cells; expression levels for 3226 genes on 22 
microarray plates; 7 from women with BRCAl mutation, 8 BRCA2, 7 Sporadic (neither). Tabled 
values are adjusted log(red/green) ratios from spotted cDNA microarrays. 

BRCAl BRCA2 Sporadic 

1 2 7 1 2 8 1 2 
genel -1.29 -1.41 -0.55 -0.7(J 1.33 1.14 -0.44 0.26 
gene2 2.03 0.58 -0.12 0.23 -0.91 -0.39 0.70 -1.55 
gene3 0.32 -0.44 1.25 0.53 -0.96 -0.51 -1.26 -0.74 
gene4 -1.31 -0.98 0.24 -0.24 0.28 2.13 0.32 0.42 
gene5 -0.66 -0.07 1.22 -0.41 -0.88 -0.83 0.25 -0.97 

Figure 1 concerns the comparison of gene activity in BRCAl tumors versus BRCA2 tumors, 
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and so involves only the first 15 columns of the matrix begun in Table 1. For this analysis each 
gene's data was summarized by its Wilcoxon statistic: the 15 expression levels for gene i, 7 BRCAl 
and 8 BRCA2, were ranked, giving the rank sum statistic 

}'i = sum of BRCA2 ranks, (i = 1, 2, ... , n = 3226) (1.1) 

The }'i range from a low of 36, if the BRCA2 numbers were the 8 smallest among the 15, to a high 
of 92 if they were the 8 largest, 

36 $ }'i $ 92. (1.2) 

In the usual terminology, small or large values of }'i correspond respectively to underexpression or 
overexpression of gene i for BRCA2 compared to BRCAl tumors (or equivalently down-regulation 
or up-regulation.) 

0 

' ., ... . ' 

,.. 
l(y) 

\ ., 
I •'_. • 
I o. • 

I I • 

-- -.el!S- - - --- - ---- ---~- -
c•BRCA2 underexpr BRCA2 overe,cpr•> 

40 60 80 

Rartl< Sum Y tor BRCA2 plates-> 

100 

Figure 1: Rank sum statistics comparing BRCAI vs BRCA2 for the 3226 genes; points are 
actual counts, solid curve show expected counts under the null hypothesis of no activity differences. 
Dashed curve is a Poisson regression fit to the actual counts, as explained in Section 2. 

The points in Figure 1 are the actual Y counts. For example the leftmost point, plotted at 
(36,8), represents the 8 genes for which }'i equaled 36. The solid curve shows -the expected counts 
assuming no difference between BRCAI and BRCA2 expression levels, i.e. under the permutation 
distribution of the numbers 1, 2, ... , 15 (called the "Wilcoxon (7,8)" distribution in what follows). 
The expected count is only 0.501 for Y = 36 so there are 16 times as many genes with l'i = 36 as 
we would expect if there were no expression differences between BRCAl and BRCA2 tumors. 

The dashed line, a smooth Poisson regression fit to the points, is much wider than the expected 
curve, clearly indicating substantial genetic activity differences for at least some of the genes. The 
question of interest is "which of the 3226 genes can we confidently label as differently active?" 
The naive answer would be to run 3226 separate Wilcoxon tests. 614 of the 1-;'s lie either below 
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the .025 point for a standard Wilcoxon(7,8) distribution or above its .975 point. This would give 
a reasonable criteria for declaring any single prechosen gene differently active, but it leads to an 
expected 161 false declarations if none of the 3226 genes are actually different. 

Efron, Tibshirani et al. (2000) developed a simple empirical Bayes approach to this kind of 
simultaneous inference problem. As described in the next Section, the approach produces believable 
a posteriori probabilities of activity differences for each gene, starting with a minimum of a priori 
assumptions. In Figure 1 's case we will see that the estimated values of Probability{Differentll';} 
for the 614 "rejected" genes range from a low of 0.50 near the rejection thresholds to a high of 
nearly 0.95 at the extremes of the Y scale. 

The downside of the empirical Bayes approach is its ad hoc appearance compared to the 
mathematical certitudes of standard hypothesis testing theory. Benjamini and Hochberg (1995), 
beginning with an algorithm of Simes (1986), developed an attractive new multiple comparison 
technique that produces exact frequentist inferences for what they call the "False Discovery Rate" 
(FDR). Section 3 discusses the FDR algorithm and shows that in an important sense it exactly 
matches the empirical Bayes methodology, perhaps strengthening belief in both techniques. We 
can use the two approaches in a complementary way to answer the kind of simultaneous inference 
problems raised in Figure 1. A useful variant called the "local false discovery rate" is introduced 
in Section 4. 

Section 5 returns to the full data set of Table 1, using the empirical Bayes methodology to 
make a three-way activity comparison between BRCAl, BRCA2, and Sporadic tumors. We close 
in Section 6 with some notes and remarks. 

The statistics literature for microarrays is quite recent, with much of it unpublished. Useful 
references for simultaneous testing situations include. Newton et al. (2000), Dudoit et al. (2000), 
Tusher et al. (2000), as well as Efron et al. (2001). 

2 Empirical Bayes Inferences 

We assume that there are two classes of genes, "Different" and "Not Different", in our example 
meaning that the gene is either differently or not differently expressed in BRCAl and BRCA2 
tumors. Let the prior probabilities of the two classes be p 1 and p 0 = 1 - p1 , with corresponding 
prior densities fi(y) and f 0 (y) for the summary statistic Y, 

Pl = Prob{Different} h (y) density of Ji; if genei "Different" 

Po = Prob{Not Different} f 0(y) density of Ji; if genei "Not Different". 

Finally let f (y) be the mixture density 

f (y) = Pofo(Y) + Pih (y). 

A direct application of Bayes' theorem gives a posteriori probabilities 

P1(Y) = Prob{Differentll'; = y} = 1- Pofo(Y)/f(y) 

and 

p 0 (y) = Prob{Not Different!};= y} = Pofo(Y)/f(y) 
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Full Bayesian analysis would require prior specification of Po, Pl, f 0 (y), and Ji (y), but we can use the 
massively parallel structure of microarray data to estimate an empirical Bayes version of (2.3). In 
doing so we will be carrying out the kind of empirical Bayes or compound Bayes analysis suggested 
by Robbins nearly 50 years ago, for instance in Robbins (1956), but rarely practical in traditional 
biometric settings. 

Figure 2 shows an empirical Bayes analysis for the situation of Figure 1: f 0 (y) here is the 
discrete density for a Wilcoxon(7,8) variate, the solid curve in Figure 1 divided by 3226; f (y) has 
been estimated by a Poisson regression fit to the Y counts. (Specifically by modelling f (y) as a 
natural spline having 5 degrees of freedom and with offset log(f 0 (y)), giving J(y) proportional to 
the dashed curve in Figure 1.) Together these give an estimate of p 1(y) = Prob{Differently} in 
(2.3), 
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Figure 2: Empirical Bayes estimates (2.3) of p 1(y) = Prob{DifferentlYi = y} for the comparison 
of BRCAl and BRCA2 in Figure 1. Solid curve: assuming prior probability p0 of "Not Different" is 
1; Dotted curve: assuming p 0 = .67, the largest value of Po that makes p 1 (y) everywhere nonnegative. 

Pl (y) = 1 - Pof o(Y)/ J(y). (2.4)· 

The prior "Not Different" probability Po is unidentifiable without strong parametric assump­
tions, such as normality, on / 0 (y) and f (y). However the most conservative possible choice, Po= 1, 
the choice that minimizes the probability of detecting "Different", still gives interesting results. 
The solid curve in Figure 2 is P1 (y) for Po = 1 in (2.4). We see that for Po = 1, genes with 1'i $ 39 -or }"i ~ 89 have Prob{DifferentlY} exceeding 0.90. There are 101 such genes, 49 on the left and 52 
on the right. 

An obvious objection to setting p0 = 1 is that p 1 (y) then becomes negative near the middle of 
the Y scale. Expression (2.3) shows that in order for Pl (y) to be always nonnegative we must have 

Po$ Po,max = min{J(y)/ fo(y)}. 
'II 

(2.5) 
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The dotted curve in Figure 2 indicates .P1(y) for p0 = .Po,max = .67. This raises .P1(y) somewhat in ---the tails, so that now Prob{Different IY} exceeds 0.90 for Yi :S 40 or Yi ~ 88, a total of 134 genes. 
(Remark F of Efron et al. (2001) suggests a more stable estimate of Po,max-) We will see in Section 
3 that the ambiguity in Po plays the same role in the FDR theory as here. 

The argument leading to Figure 2 has a strong heuristic foundation but no formal basis. To this 
end, the asymptotic accuracy of (2.4) as the number of genes goes to infinity is established under 
some restrictions in Storey (2001A). We take another approach in Sections 3 and 4, where (2.4) is 
related to the frequentist False Discovery Rate algorithm of Banjamini and Hochberg (1995). 

3 Connection With False Discovery Rates 

The empirical Bayes analysis of Section 2 is closely related to Benjamini and Hochberg's theory 
of False Discovery Rates (1995). We begin with a brief review of the FDR algorithm. Suppose one 
wishes to simultaneously test n null hypotheses H1 , H2 , ••• , Hn on the basis of independent test 
statistics Y1 , Y2, ... , Yn. From the Yi we calculate corresponding p-values Pi, denoting the ordered 
values as 

(3.1) 

P(i) being the most significant and P(n) the least significant in the usual terminology. 

Let 'R(Y) be a proposed rule for selecting which of the null hypotheses to reject, e.g. "Reject 
Hi if Pi is among the smallest 5% of the p-values and Pi :S .01". Following work by Simes (1986), 
Bejamini and Hochberg defined the False Discovery Rate of n to be its expected proportion of false 
rejections, 

FDR('R) = E{proportion of rejected Hi that are actually true}, (3.2) 

(with the proportion equaling zero if nothing is rejected) and proved a useful algorithm for control­
ling the FDR below a preset value a: let 

i0 = argmax{P(i) :S j_ !!.. } 
i n Po 

lPo = proportion of true Hi]. (3.3) 

Then the rejection rule 

(3.4) 

has 

(3.5) 

(3.5) becomes an equality if the Yi are continuous as well as independent, Theorem (5.1) of Ben­
jamini and Yekutieli (2001). Other FDR-controlling rules are available, as in Benjamini and Wei 
(1999), but we will concentrate on (3.3, 3.4). 

In the context of Figure 1, n = 3226 and Hi= {genei Not Different}. Notice that po in (2.1) is 
the expected proportion of true Hi, nearly the same .as its definition in (3.3). The 1995 paper took 
Po = 1, which here as in (2.3) is the most conservative choice, minimizing i0 and m~ing inequality 
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(3.5) least sharp. In more recent work, Benjamini and Hochberg (2000), they consider estimating 
Po, see also Storey (2001A,B). Empirical Bayes considerations, as in (2.5) and Remark F of Efron 
et al. (2001), give intuitively appealing bounds for p0 • 

Figure 3 applies the FDR-controlling algorithm to the comparison of BRCAl with BRCA2, 
using a = 0.10 and Po = 1.0. The step function in the left panel shows the ordered p-values (3.1) for 
one-sided Wilcoxon tests of Hi versus the alternative that genei underexpresses BRCA2; that is, Pi 
is the probability that a Wilcoxon(7,8) variable is equal or less than the observed value 1'i- The right 
panel shows 'R. 1o applied to the overexpression of BRCA2, now with Pi = Prob{Wilcoxon(7,8) ~ 
1'i}. (Notice that the step functions are empirical cdf's of the p-values, rotated 90 degrees.) 
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Figure 3: Application of FDR-controlling algorithm to BRCA1/BRCA2 comparison, a = .10, 
Po= 1.0. Left Panel: Step function shows ordered p-values for one-sided Wilcoxon tests that reject 
for small values of rank sum statistic 1'i; 'R .10 procedure (3.4) rejects for the 68 genes having 1'i S 40. 
Right Panel: Same, rejecting for large values of 1'i; 'R. 1o rejects for the 66 genes with ~ 2::. 88. 

The close connection of Benjamini and Hochberg's FDR procedure with the empirical Bayes 
methodology of Section 2 follows directly from Bayes theorem. Let F0 (y) and F(y) be the cumu­
lative distribution functions (CDF's) corresponding to f 0 (y) in (2.1) and f(y) in (2.2), and define 
the "Bayesian FDR" for {Y S y} to be 

Fdr(y) - PoFo(Y)/F(y) (3.6) 

= Prob{genei Not Different11'i S y} 

as in (2.3), called the "q-value" in Storey (2001A,B). If we have Ni genes with 1'i S y then, starting 
from (2.1) and assuming independence, the number Nio of the Ni from the "Not Different" class 
will be binomially distributed, 

(3.7) 

and for large Ni we can expect Fdr(y) to be close to FDR(1'i Sy), (3.2). This will be true even if 
the 1'i are correlated, a mixing condition being enough to ensure asymptotic equivalence, as shown 
in Genovese and Wasserman (2001) and Storey (2001). 
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Now let F(y) be the usual empirical cdf of the Y/s, F(y) = #{'Yi < y} /n. The obvious 
nonparametric estimate for Fdr(y) is 

Fdr(y) = PoF0 (y)/ F(y). (3.8) 

Equivalence Theorem The Benjamini-Hochberg rule 'Ra, (3.4) is equivalent to rejecting all Hi 
with }'i $ Ya, where Ya is defined by 

Ya= max{Fdr(y) $ a}. 
y 

Reversing the y scale, a similar result holds for rejection regions {l'i ~ y}. 

(3.9) 

Proof Let Y(i) indicate the ith ordered value of {Y1, Y2, ... , Yn}- Then .F(Y(i)) = i/n and 
F0 (Y(i)) = P(i)· The constraint Fdr(y) $ a is equivalent to 

PoP(i)/(i/n) $ a or P(i) $ .: ~, (3.10) 
n Po 

coinciding with the FDR definitions (3.3), (3.4). Tied values of }'i can be ordered arbitrarily without 
affecting this argument, as can be seen from inspection of Figure 3. 

The equivalence theorem says that if we choose the rejection region {l'i $ y} as large as possible 
subject to the constraint that the estimated empirical Bayes probability Prob{Not DifferentlY $ y} 
is no greater than a, than our expected proportion of false rejections is also less than a. This is 
true for any choice of Po in the two algorithms and in particular for the conservative choice Po = 1. 
In this situation one can be both a Bayesian and frequentist simultaneously. 

The FDR theorem was originally proved under an independence assumption on the test statis­
tics Y1, Y2, ... , Yn. Recent work by Benjamini and Yekutieli (2001), relaxes this assumption to 
allow a form of positive dependence. However independence plays no essential role in the empirical 
Bayes approach - all we need is F(y) in (3.8) to be a reasonable estimator of F(y) - which suggests 
that the FDR algorithm should give reasonably accurate results under quite general conditions on 
the test statistics. The assumptions underlying the empirical Bayes and FDR methods are further 
discussed in the next Section which provides a further connection between the FDR and empirical 
Bayes approaches, and illustrates the principal advantage of the latter. 

4 The Local False Discovery Rate 

What we called the Bayesian False Discovery Rate in (3.6) can be defined for general rejection 
regions, including infinitesimally "local" ones. For Y a subset of the Y sample space let 

Fdr(Y) - P0Prob10 {Y E Y}/Prob1{Y E Y} 

= Prob{genei Not DifferentlJ'i E Y}, 

(4.1) 

with f 0 and f defined as in (2.1), (2.2). In Figure 1 for example we might take Y = {'Yi $ 47 or 
}'i ~ 81 }, the .05 (actually .054) two-sided Wilcoxon rejection region. Estimating the denominator 
in (4.1) by the proportion of }'i's in Y, 614/3226 = 0.190, gives 

- ) .054 
Fdr(Y = Po _

190 
= Po · .284. (4.2) 
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Under the conservative assumption Po = 1, we expect about 28% of the ".05 significant" genes to 
actually be Not Different, while Po= Po,max = .67 gives 19%. 

4.1 Local FDR 

Efron et al. (2001) defined the local false discovery rate at point y in the Y-space to be the 
function p 0 (y) in (2.3), 

fdr{y) = Pofo(y)/ f (y) = Po(Y) (4.3) 
= Prob{Not Differentll'i = y}. 

There is a simple Bayesian relationship between Fdr(Y) and fdr(y) : 

Averaging Theorem Fdr(Y) = E1{fdr(y)IY E Y} . (4.4) 

Proof E1{fdr(y)IY E Y} = f/iPofo(Y)/ f(y)]f(y)/ Jy f(y) = P0Prob1JY}/Prob1{Y} = Fdr(Y). 
In words, Fdr(Y) is the conditional !-average of fdr{y) for y E Y-

The advantage of the local fdr is its specificity: it provides a measure of belief in gene i's 
"significance" that depends on l'i's exact value, not on its inclusion in a larger set of possible 
values. Consider Y = {l'i ~ 40}, the FDR-controlling set for a = 0.10, Po = 1.0, on the left side 
of Figure 3. It has overall Bayesian Fdr = .089, (3.4), but with estimated local values of fdr(y) 
ranging from .04 to .13. This just says the obvious, that the boundary value y = 40 is the most 
likely point in Y to yield a false detection, but it is nice to have a quantitative assessment. A 
biogeneticist could use the observed fdr values quite flexibly, without necessarily declaring a sharp 
boundary between significant and not significant cases, and perhaps including a priori opinions of 
differential gene activity as discussed in Section 4.3. 

The main disadvantage of the local fdr is the need to estimate the density J(y) in (4.3) (or more 
generally to estimate the ratio f 0 (y)/ J(y) in situations where f 0 (y) is not theoretically determined, 
see Remark C of Section 6). For example we needed the Poisson regression estimate J(y) in (2.4) 
to construct the curves Pl (y) = 1 - filr(y) of Figure 2. 

In discrete situations like that of Figure 1 the simplest estimate of f(y) is 

f(y) = #{l'i = y}/n, 

with corresponding fdr value fdr(y) = p0 f 0 (y)/ f (y). The averaging theorem (4.4) then gives 

Fdr(Y) = L fdr(l'i)/#{l'i E Y}, 
Y.EY 

(4.5) 

(4.6) 

so that Fdr{y) in (3.8) equals the average of fdr(l'i) for l'i ~ y. We can restate the equivalence 
theorem to say that the Benjamini-Hochberg upper limit Ya is the maximum value y such that the 
average of fdr(l'i) for l'i ~ y is no greater than a. 

The estimator fdr(y) can be highly variable, even with n very large. Given a smoothed, less 
variable estimate fdr(y) as in Figure 2, we still might wish to adjust its global average to match 
Fdr{y 0 ), by replacing filr(y) with 

fdr(y) = cfilr(y) (4.7) 
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where c is a divided by 'I:filr(1'i)/#{Yn E Y}. In this way we obtain a global rejection region 
y 

Yo from the Benjamini-Hochberg algorithm with guaranteed FDR control, along with compatible 
local fdr estimates that differentiate error probabilities within Yo- Notice that filr(y) in (4.7) is 
only required for y E Yo so even a rough guess of f(y)'s tail behavior can be used to approximate 
fdr(y). 

4.2 Conservative Estimation Property 

The empirical estimate of the Bayesian False Discovery Rate Fdr(Y), (4.1), is 

Fdr(Y) = PoFo(Y)/F(Y), 

where 

Fo(Y) = l fo(Y) and .F(Y) = N(Y)/n, 

(4.8) 

(4.9) 

N(Y) = #{Yi E Y}. We will show that Fdr(Y) is biased upward for estimating the actual False 
Discovery Rate, in a strong sense described next. 

Let N1 (Y) and N 0 (Y) indicate the number of "Different" and "Not Different" genes with 
Yi E Y, so N(Y) = No(Y) + N1(Y), and define 

<J,(Y) = No(Y)/N(Y); (4.10) 

<J,(Y) is the actual proportion of false detections if we reject all null hypotheses having Ji E Y, 
while its expectation is Benjamini and Hochberg's definition (3.2), FDR(Y). The estimate Fdr(Y), 
(4.8), amounts to substituting the expectation 

(4.11) 

For the unobservable numerator N 0 (Y) in (4.10), 

Fdr(Y) = eo(Y)/N(Y). (4.12) 

Conservative Bias Theorem The empirical Bayes False Discovery Rate Fdr(Y) is biased 
upward as an estimator of the frequentist False Discovery Rate FDR(Y) for the rule that rejects 
all Hi having~ E Y, (3.2). 

Proof With N1 (Y) fixed, Fdr(Y) and <J,(Y) are respectively convex and concave as functions of 
N 0 (Y), as illustrated in Figure 4. Two applications of Jensen's inequality give 

(4.13) 

This proves the stronger result that conditional on any value of N 1 (Y), Fdr(Y) is biased upward 
as an estimator of the expectation of <J,(Y); the theorem follows from E{<J,(Y)} = FDR(Y), uncon­
ditionally. See Remark E, and also Theorem 2 of Storey (2001B). • 

A crucial assumption for empirical Bayes estimates like those in Figure 2 is that we can estimate 
the expected number of true null hypotheses N 0 (Y) among those genes having~ in a region of 
interest y. To this end we used e0 (Y), (4.11), or eo(Y) = np0 fo(Y) for the local fdr. Overestimates of 
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Figure 4: Fdr(Y) and ¢(Y) as functions of the unobservable quantity N0 (Y), (4.13). 

E{N 0 (Y)}, by takingp 0 = 1 for instance, increase the conservative bias. More aggressive empirical 
Bayes estimators such as the dotted curve in Figure 2 put more strain on accurately estimating 
E{No(Y)}. 

The conservative bias theorem applies to a fixed choice of Y, while the original FDR algorithm 
(3.3), (3.4) selects the rejection set Yo adaptively, in a "greedy" way that might seem to generate 
an anticonservative bias. However the sophisticated calculations of Benjamini and Hochberg {1995) 
and Benjamini and Yekutieli (2001) show it is still true that E{ ¢(Y0 )} ~ a, (3.5). Roughly speaking 
the anticonservative maximization of Yo in (3.3) is more than counteracted by the effects at work 
in Figure 4. 

4.3 Exchangeability and Prior Beliefs 

Empirical Bayes estimates like those in Figure 2 tacitly assume some form of exchangeability 
of prior beliefs among the genes. This section examines the exchangeability assumption, also 
discussing what happens when we wish to incorporate non-exchangeable prior information. 

As an example consider the value y = 84 on the x-axis of Figure 1; N(y) = 36 of the genes 
have Wilcoxon statistic 1'i = 84, versus an expected number of about 7 "Not Different" genes if we 
set Po = Po,max = 0.67, 

eo(Y) = E{No(y)} = npofo(Y) = 7.05. (4.14) 

This gives an estimate of Po(Y) = fdr(y) = Prob{Not Different IY = y}, 

_ ( ) -( ) 7.05 Po Y = fdr Y = 36 = .196, (4.15) 

as in (4.12) with Y = y, or (2.3) with f (y) estimated by J(y) = 36/n. 

The exchangeability assumption is transparent in this case: we expect about 7 of the 36 genes 
with }'i = 36 to be "Not Different", and assign a posteriori probability 7 /36 to all 36. Notice 
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that exchangeability is required only among the 36 genes, not among all 3226. In this sense the 
local fdr estimate relies less than global estimates like (3.8) on exchangeability. (The equivalence 
theorem suggests exchangeability assumptions also lurking in the Benjamini-Hochberg procedure, 
in the way that all of the genes in 'R..0 are considered equally significant.) 

In place of e0 (y), (4.14), we would usually prefer the more relevant conditional expectation 

e~ (y) = Eo{No(Y)IN(y)} = N(y)po(y). 

Replacing Po(Y) with Po(Y) = Pofo(Y)/i(y) produces the estimate 

'e;; (y) = N(y)pofo(Y)/ f(y). 

(4.16) 

(4.17) 

'£he empirical density f = !(y) = N (y) / n makes ( 4.17) identical to ( 4.14}, but smoothed estimates 
f(y) give different results. The dashed curve in Figure 1 has p0 (y) = p 0 f 0 (y)/F(y) = 0.227 and 

e;; (y) = 36 · 0.227 = 8.18. ( 4.18) 

The exchangeability argument still applies, now assigning non-significance probability 8.18/36 = 
0.227 = p0 (y) to each of the 36 genes. 

Suppose now that we have varying a priori beliefs for the genes, with prior probabilities 

Poi = Prob{genei Not Different} (4.19) 

replacing the constant value Po in (2.1). Let Po be the average of Poi over the genes, Pl = 1 - Po, 
and set 

f(y) = Pofo(Y) + P1fi(y) (4.20) 

as in (2.2). Defining p 0 (y) = p 0 f 0 (y)/ J(y), Bayes theorem and a little algebra yields an expression 
for Poi(Y) = Prob{genei Not Different l'l'i = y}: 

ri 
Poi(Y) = Po(Y) 1- (1 - ri)Po(Y) where Poi I Po 

ri = 1 - Poi 1 - Po 
(4.21) 

Given prior probabilities Poi, perhaps obtained from a previous experiment, we could substitute 
p0 (y) = p0 f 0 (y)/ f(y) into (4.21) to obtain updated estimates Poi(y). Here f(y) would be estimated 
by fitting the observed counts as in Figure 1, the justification being that nf (y) = E{N(y)} as 
before. In practice we might have only fragmentary prior information, perhaps a list of a few dozen 
genes that the researchers believe particularly likely to be important . For example if one of the 36 
genes with J'i = 84 was on the list, we might take ri = .50, indicating it was roughly half as likely 
a priori to be Not Different, and modify p0 (y) = .227, (4.18), to 

~ ( ) .5 Poi y = .227 l __ 
5

. _
227 

= .128 (4.22) 

5 Three- Way Comparison 

The breast cancer data set of Table 1 comprises three groups, BRCAl, BRCA2, and Sporadic, 
but so far our examples have only compared BRCAl with BRCA2. This section makes the three­
way comparison, using the same simple empirical Bayes model as before but now applied to a 
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higher-dimensional summary statistic "Yi". Multi-way comparisons illustrate an advantage of our 
local empirical Bayes approach, but also show its limitations. 

Each gene is represented by 22 microarray readings, as in Table 1, 7 for BRCAl, 8 for BRCA2, 
and 7 for Sporadic. After ranking the 22 numbers, gene i's summary statistic was taken to be the 
3-vector. 

1'i = (BRCAl rank sum, BRCA2 rank sum, Sporadic rank sum)/253; (5.1) 

253 is the total rank sum so }'i is a point in the simplex 

3 

S={Y:Y(j)~O and I:Y(j)=l}. (5.2) 
1 

We have n = 3226 such points, one for each gene. The }'i's are essentially two-dimensional, since 
the first two components determine the third, which simplifies the actual numerical calculations. 

The empirical Bayes model (2.1) still is applicable, with "Not Different" now meaning that a 
gene has the same expression score distribution for all three tumor classes. Bayes rule still applies 
as stated in (2.2), (2.3). Simulation was used to approximate the null density f 0 (y), yielding an 
estimate of P1 (y) = Prob{Different IJ'i = y}, as described in Remark D of Section 6. 

Figure 5 shows smoothed contours of Pl (y) plotted in S. The plot is in barycentric coordinates, 
meaning that the triangular region S has been laid flat on the 2-dimensional page, preserving the 
original 3-dimensional geometry. Because (5.1) deals with rank vectors the points Yi are constrained 
to lie within the indicated hexagon surrounding the central value (1/3, 1/3, 1/3). The corners of 
the triangle, which are outside the range of the plot, are indicated by the "OVEREXPRESSED" 
labels. For example the corner (1, 0, 0) lies beyond the edge of the hexagon labeled "BRCAl 
OVEREXPRESSED". Points }'i lying on that edge would correspond to genes where the 7 BRCAl 
expression levels exceed the other 15. 

Figure 5 displays a striking feature: the differences between BRCAl and BRCA2 are sharper 
than the differences between Sporadic and either of the BRCA 's. This is clearest in the contours 
for p1 (y) = .90, labeled "9". These are vertically oriented and not closed at the top or bottom of 
the hexagon, indicating that high or low Sporadic scores are not indicative of genuine expression 
differences. To state things phenomenologically, genes that were BRCA2 overexpressed tended to 
have BRCAl underexpression but an intermediate expression level for Sporadic, and vice versa for 
genes with BRCA2 underexpressed. There were no genes for which we can be reasonably certain 
that both BRCA 's were overexpressed or both underexpressed. It is as if the BRCAl and BRCA2 
mutations had diverged in opposite directions from a baseline Sporadic type. 

The three-way comparison of Figure 5 points out some strengths and limitations of the non­
parametric empirical Bayes model (2.1). A strength is the local nature of Po (y) and p 1 (y) in (2.3). 
These depend only on the density ratio f 0 (y)/ f (y) at y, not on an ordering of the Y space, which 
is why we are able to deal with multi-dimensional }'i vectors such as (5.1). The original FDR 
algorithm (3.1)-(3.4) is based on p-values, implying on ordering of outcomes and less straightfor­
ward applications to multi-way comparisons. On the other hand, an inference of "Different" is 
less definitive for multi-way comparisons. In the two-way comparison of Figure 2, genes that were 
significantly Different fell into two clear categories: "Different with BRCA2 expression greater than 
BRCAl" on the right, and the reverse on the left. Things are less clearcut in Figure 5. 71 of the 
3226 points fall beyond the .90 contours, having posterior probability greater than .90 of being 
Different. These are located toward the right or left extremes of the hexagon, with right again 
indicating BRCA2 expression greater than BRCAl. 
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Figure 5: Three-way comparison of the breast cancer microarray data; contours of p1 (y) = 
Prob{Diff erent Yi = y}; "9" shows pi (y) = .90 etc. The contours are vertically oriented, indicating 
stronger expression differences between BRCAl and BRCA2 tumors than between Sporadic and 
either BRCA. Hexagonal boundary indicates feasible region for rank-sum vectors Yi, (5.1); Points 
are the 3226 Yi vectors "+" is center (1/3, 1/3, 1/3) of simplex S, (5.2). The three corners of S lie 
outside the range of this figure, beyond the "OVEREXPRESSED" legends. 

However the status of the Sporadic response for these points is less clear, the choices "BRCAl 
< Sporadic < BRCA2", "BRCAl < BRCA2 < Sporadic" etc. remaining ambiguous. Further 
information is available, by separately examining versions of Figure 2 that apply to the Sporadic­
BRCA 1 comparison and the Sporadic-BRCA2 comparison, but this tactic was only moderately 
helpful here. 

6 Remarks 

A. Data Adjustments Processing differences, for example in the treatment of the green-dyed 
background reference material, can easily produce systematic errors in the readings on any one 
microarray, making some "brighter" than others. Hedenfalk et al. (2001) adjusted their raw 
optical measurements for a variety of such factors. We made a final adjustment: each microarrays 
data, that is each column of the 3226 x 22 data matrix, was linearly transformed to have mean 0 
and variance 1. Doing so nullifies plate effects, at the expense of possibly reducing the magnitude 
of genuine expression differences. 

Alternatively we might have adjusted each microarray's mean to its group average, (BRCAl, 
BRCA2, or Sporadic) rather than to zero. Doing so shifts J(y) in Figure 1 roughly 3 units rightward. 
Making no adjustment at all gave results more like Figure 1. A t-test comparing the 7 BRCAl 
plate averages with the 8 BRCA2 averages indicated no systematic differences, and in this case we 
preferred adjusting all means to zero. We also tried an even more conservative approach, replacing 
each column of the data matrix with its normal scores vector, but this gave almost the same results. 
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B. Continuous Cases Instead of the discrete Wilcoxon rank-sum statistic (1.1), we might have 
taken 1'i to be the two-sample t-statistic. Doing so produced results very much like Figure 1, with 
the solid curve f O (y) now the standard t density, 13 degrees of freedom. As in Figure 1, the smooth 
parametric density J(y) fit to the 3226 }'i's was substantially wider than J0 (y). The equivalent of 
the Po= 0 curve in Figure 2 yielded 50 genes having Pl (l'i) ~ .90; Po,max = .66 in (2.5). 

C. Estimating f 0(y) It isn't clear that the t13 density is the correct choice for f0(y) in Remark 
B. Microarray data structures allow us to estimate f 0 (y) by permutation methods rather than just 
accepting the normal-theory answer. Permuting the 15 BRCAl, BRCA2 plates and recalculating 
the Y statistics gives a direct estimate of J0 • It can be shown that the permutations should be as 
balanced as possible. For example if there were 8 plates in each group, each permutation should 
transfer 4 plates from group to group. Unbalanced permutations add a spurious component of 
variance to the estimation of f 0 (y), arising from those genes in the genuinely "Different" class. 

20 independent almost balanced permutations were used to estimate f 0 (y) in the context of 
Remark B. The resulting 20 · 3226 Y's had a distribution that was slightly shorter-tailed than 
t 13 • Using this estimate off 0, the equivalent of the solid curve in Figure 2 gave 112 genes having 
p 1 (l'i) ~ .90, about the same as in the Wilcoxon analysis . 

The comparative experiment discussed in Efron et al. (2001) had only four plates for each of 
the two treatments. There it proved more efficient to add a constant "a0 " to the denominator of 
the usual two-sample t-statistic when computing the gene score }'i. ("More efficient" was defined in 
terms of the number of genes with Pl (l'i) ~ .90.) In this case permutation methods were essential 
to the estimation of f o (y). 

D. The Three- Way Comparison The contours in Figure 5 were computed using logistic regression: 
10 · 3226 vectors Yi were generated by randomly permuting the integers 1, 2, ... , 22, partitioning 
them into groups of 7, 8, and 7, and applying definition (5.1). The 3226 actual vectors }'i and the 
32260 vectors Yi were plotted in the simplex S. Thinking of the 1'i 's as Successes and the yi's as 
Failures, a logistic regression was run to estimate the probability of success, say i(Y), as a mixed 
quadratic function of the coordinates of the point Y in S. Finally p 1 (Y) = Prob{Different IY} was 
estimated to be 

.,... 1 - i(Y) 
P1(Y) = 1- Pol0 · 11'(Y) (6.1) 

with Po set equal to 1 in Figure 5. (Formula (6.1) follows from the ratio of Successes to Failures, 
1r(Y) = f (Y)/(f (Y) + 10 · f 0(Y)).) Notice that the shape of the contours does not depend on 
Po, while the probability level assigned to the curves does, with p0 (y) = 1 - fi1(y) being directly 
proportional to Po· 

E. True and Untrue Null Hypotheses A pleasant surprise of the original FDR algorithm (3.3-3.5) 
was that its proof required no probabilistic assumptions about the untrue null hypotheses among 
H1, H2, • .. , Hn. Only the p-values for the true Hi needed to be independent uniform variates. 
The same phenomenon occurs for Bayesian False Discovery Rates: the Conservative Bias Theorem 
(4.13) holds true conditionally on N1(Y), the number of "Different" genes having Yi= Y, Different 
equaling untrue in our terminology. 

In fact, as pointed out in (4.11, 4.12), the only quantity required for the estimation of Fdr(Y) 
is e0 (Y) = E1

0 
{N 0 (Y)}, the expected number of "true" 1'i in Y. Only fo(Y) plays a computational 

role in the Bayesian assumptions (2.1-2.2), while fi(y) is functionally unimportant. However this 
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doesn't diminish the point of Section 4.3, that the interpretation of the FDR results, Bayesian or 
frequentist, requires some form of exchangeability for application to any particular gene. 

F. Prediction Hedenfalk et al. (2001) were interested in the prediction problem: given a new 
unclassified microarray plate, how should it be assigned to one of the three categories BRCAl, 
BRCA2, or Sporadic? The empirical Bayes methodology of this paper bears on the prediction 
problem. 

Consider the situation of Figure 1 where we are only interested in the two categories BRCAl 
versus BRCA2. Let X be the 3226 vector of data from a new plate, and suppose we wish to classify 
it as the basis of a linear discriminant function Q = EwiXi. It is intuitively obvious that only genes 
in the Different class should receive non-zero weights. 

Let {xij}, i = 1,2, ... ,3226, j = 1,2, ... ,15, represent the Hedenfalk data. It can be de­
duced, using further empirical Bayes analyses, that the Xi/s are roughly uncorrelated and have 
constant variance across the different genes. Without going into details, it can then be shown that 
a reasonable estimate for the ideal discriminant function is 

(6.2) 

Here XiI and Xi2 are the means for gene i's BRCAl and BRCA2 expression levels, while Pl (Yi) is 
the estimate (2.4) for Prob{genei Different !Yi}- Our current work concerns the efficacy of (6.2) in 
practical prediction problems. 
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